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1 Introduction

In contrast to a large amount of theoretical and empirical work available on the val-
uation of credit derivatives (see Bielecki and Rutkowski (2002), Duffie and Singleton
(2003), Lando (2004) for reviews), hedging of credit derivatives remains a largely
unexplored avenue of research. When valuing and hedging credit derivatives, two
quantities are crucial. The first is the probability of default (or default intensity,
if it exists), and the second is the default recovery (or recovery rate) in the event
of default. While in traditional models the recovery rate is given exogenously as a
known constant at the default time1, this rate is stochastic in reality, even condi-
tional on the default time. This uncertainty in the default recoveries of both the
underlying instrument (e.g., equity) and particularly the credit derivative (e.g., a
convertible bond) is perhaps the most important reason why hedges in practice are
not self-financing.

The main purpose of this paper is therefore not valuation but hedging credit deriva-
tives in the presence of recovery risk in a reduced-form framework. Since in general,
the common objective of arbitrageurs in credit derivatives markets is to minimize
the variance of the hedging costs, we focus on the locally risk-minimizing hedging
strategy. Föllmer and Sondermann (1986) pioneered this approach in the spe-
cial case where the underlying instrument follows a martingale. At each point in
time they require that the risk, defined as the expected quadratic hedging costs,
is minimized. However, in semimartingale models a risk-minimizing strategy does
not always exist. Therefore, Schweizer (1991) introduced a locally risk-minimizing
(LRM) hedging strategy and showed that – under certain assumptions – a strategy
is locally risk-minimizing if the cost process is a martingale which is orthogonal to
the martingale part of the underlying instrument process. The LRM-strategy is
mean-self-financing, that is at each point in time the expected sum of discounted
cash infusions or withdrawals until maturity is zero. The value of the hedge portfo-
lio is then the discounted expected terminal payoff of the option under the so-called
minimal equivalent martingale measure.

Hedging strategies for credit derivatives within the reduced-form framework have
been studied in the literature. On the one hand, there exist quite tractable mod-
els where the hedge ratio is explicitly given. For instance, Bielecki, Jeanblanc and
Rutkowski (2007) derived a hedging strategy for credit derivatives using credit de-
fault swaps (CDS) and a position in the riskless money market account. The model

1One exception is Guo, Jarrow and Zeng (2009). They model the recovery rate process itself.
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is easily implemented due to the fact that the interest rate level is assumed to be
flat at level null and both the default intensity and the recovery payment are deter-
ministic, i.e. the default time is the only random quantity. On the other hand, there
exist models that allow all of the relevant quantities to be stochastic, but only yield
hedge ratios that contain the predictable process appearing in the above mentioned
martingale representation of the claim to hedge. Therefore, using these strategies,
one has to calculate this process. If all relevant quantities are stochastic and possi-
bly dependent, the situation quickly becomes hopeless. Models of this type can be
found, for instance, in Bielecki, Jeanblanc and Rutkowski (2008) and Bielecki, Jean-
blanc and Rutkowski (2011).2 Biagini and Cretarola (2007, 2009, 2012) applied the
local risk-minimization approach to credit derivatives. However, they assume the
recovery payment to be constant conditional on default, and explicit solutions are
given only for the case of either the interest rate or the default rate being stochastic.
In this paper, we try to fill the gap between those two classes of models and derive
the locally risk-minimizing hedging strategy in the case that the recovery payment
is stochastic conditional on default and both stochastic but independent interest
and default rates. This independence assumption, however, will turn out to be no
major restriction.

We derive LRM-hedging strategies for reduced-form models when there are two
hedging instruments: a locally riskless money market account and a risky underlying
instrument. We denote the recovery rate as single-stochastic if the recovery amount
depends only on the default event and the interest rate. We call the recovery rate
doubly-stochastic if the recovery amount also depends on the realization of another
random variable. Corresponding model variants are examined for the reduced-form
model framework. In this framework we assume the existence of a tradable zero
coupon bond with total loss at default of the firm under consideration. However,
we emphasize that the defaultable zero coupon bond can be replaced by stocks, if
the stock is assumed to fall to a prespecified level at the time of default.

It turns out that the corresponding LRM-strategy is not only mean-self-financing
but also self-financing if the default recovery is single-stochastic. That is, as long as
the recovery amount is known in the event of default, there exists a self-financing
replication strategy for credit derivatives. Moreover, we find that in the more
realistic case of doubly-stochastic default recoveries, the LRM-hedging strategy does

2In fact, there exists a large amount of sometimes overlapping published and unpublished

papers by the same and related authors. For a complete list, we refer to Bielecki and Rutkowski

(2002) and Chesney, Jeanblanc and Yor (2009).
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only depend on the expected recovery amount, not on other characteristics of its
distribution. This key result of the paper helps to justify the frequently made
simplifying assumption that the default recovery is a constant, conditional on the
default event, when valuing and hedging credit derivatives.

At first glance this result seems to contradict the result of Grünewald and Traut-
mann (1996) when deriving LRM-strategies for stock options in the presence of
jump risk. In that setting the LRM-strategy depends additionally on the variance
of the stock’s jump amplitude. This key difference is due to the fact that in our
model default of the firm implies that the underlying instrument’s price jumps al-
ways to zero while in Merton’s (1976) jump diffusion setting assumed by Grünewald
and Trautmann (1996), the option’s underlying stock price jumps to an arbitrary
price level.

We also run a simulation to test the impact of the different model assumptions on
the cumulative hedging costs. It will turn out that the latter are nearly unaffected
by the whether the interest rate is deterministic or stochastic. However, they are
affected by the assumptions imposed on the default rate. Therefore, our simulation
results suggest that both the recovery and the default rate should be modelled
as stochastic processes when hedging credit derivatives. We also test the LRM-
strategy against alternative strategies (and alternative hedging instruments). First,
we consider the duplication strategy using CDS contracts by Bielecki, Jeanblanc
and Rutkowski (2007) or Bielecki, Jeanblanc and Rutkowski (2008), respectively.
Finally, we also consider two cross-hedging strategies. The first of them involves a
hedging instrument that trades at a spread (in the default intensity) relative to the
credit derivative we wish to hedge. The second cross-hedging strategy involves a
position in a credit index of the type investigated in Brigo and Morini (2011), i.e.
a pool of credit names with the same credit quality (the same default rate) as the
instrument we wish to hedge.

The paper is organized as follows: Section 2 describes hedging as a sequential
regression and illustrates the paper’s basic insight. Section 3 looks at locally
risk-minimizing hedging policies in a reduced-form model when recovery is single-
stochastic and doubly-stochastic, respectively. In Section 4, we also consider model
extensions by assuming that either the interest rate or the default intensity or both
are stochastic. In Section 5, we use simulated data to test the impact of the differ-
ent model assumptions on the cumulative hedging costs. Section 6 concludes the
paper. All technical proofs are given in Appendix A.
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2 Hedging by Sequential Regression

In incomplete financial markets not every contingent claim is replicable. For this
reason a lot of different hedging strategies have been evolved in the literature.
On the one hand there exist hedging approaches searching self-financing strategies
which reproduce the derivative at the best. On the other hand there are hedging
strategies replicating the derivative exactly at maturity by taking into account ad-
ditional costs during the trading period. While the first class of hedging strategies
optimizes the hedging error, to be more precisely the difference between the pay-off
of the derivative FT and the liquidation value of the hedging strategy, the other
class minimizes the hedging costs. In a discrete time set-up Föllmer and Schweizer
(1989) developed a hedging approach of the latter type, the so-called locally risk-

minimizing hedging.
Table 1: Hedging Concepts: An Overview.

Complete Financial Market Incomplete Financial Market

No Delta-Hedging Superhedging

Shortfall Black, Merton, Scholes (1973) Naik and Uppal (1992) No

Risk- & Variance-Minimizing Hedging Restric-

Föllmer and Sondermann (1986) tion

on

Locally Risk-Minimizing Hedging Initial

Föllmer and Schweizer (1989) Costs

Globally Risk- and Variance-Minimizing Hedging

Shortfall Schweizer (1995)

Risk Shortfall-Hedging Restric-

Föllmer and Leukert (1999) tion

(Global) Expected Shortfall-Hedging on

Föllmer and Leukert (2000) Initial

Local Expected Shortfall-Hedging Costs

Schulmerich (2001), Schulmerich and Trautmann (2003)

When using two hedging instruments, the underlying asset with price process S

and the money market account with price process B, H = (hS,hB) describes the
hedging strategy composed of hS shares in the underlying and hB shares in the
money market account. In a discrete-time setting Vt(H) = hS

t+1St +hB
t+1Bt denotes

the liquidation value of the strategy, Gt(H) =
∑t

i=1(h
S
i ∆Si+hB

i ∆Bi) the cumulated

gain and finally Ct(H) = Vt(H)−Gt(H) the cumulated hedging costs at time t. To
achieve a locally risk-minimizing hedging strategy, Föllmer and Schweizer (1989)
solve the following
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Problem 1 (Locally risk-minimizing hedging in discrete time)

Search the trading strategy H which replicates exactly the derivative F at maturity

T and in addition minimizes the expected quadratic growth of the hedging cost at

every point in time:

EP
[
(∆Ct(H))2 |Gt−1

]
→ min for all t = 1, . . . ,T and H ∈ H with VT (H) = FT .

A solution of Problem 1 is called locally risk-minimizing hedging strategy or LRM-

hedge3. Föllmer and Schweizer (1989) have pointed out that Problem 1 is a sequen-
tial regression task that can be solved by backwards induction: In a first step we
determine hS

T and hB
T by identifying the solution of the subproblem

EP
[
(∆Ct(H))2|Gt−1

]
→ min for all hS

t , hB
t given Vt(H) (1)

for t = T with VT (H) = FT . Since we have Vt(H) = hS
t+1St + hB

t+1Bt for all
dates t = 0, . . . ,T − 1 we know VT−1(H) and then we can solve the subproblem (1)
for t = T − 1 and thus obtain hS

T−1 (as slope of the regression line) and hB
T−1 (as

intercept), and so on. Since ∆Ct(H) = Vt(H)− (hS
t St + hB

t Bt) holds, (1) is a linear
regression problem which can be solved by the least square approach. Figure 2
illustrates this idea.

In the following, we show that this relation shows directly that two different ways
of modeling recovery payments lead to the same locally risk-minimizing strategy
when hedging a short position in credit derivatives. The first kind of recovery
model assumes that the recovery rate is single-stochastic since it only depends on
the default-time and perhaps the interest rate level as illustrated in part (a) of
Figure 1 for a two period set-up. Thus, the recovery amount depends only on the
time of default (and the interest rate level).

In the second kind of recovery model the recovery rate is called doubly-stochastic

allowing in addition (to the default time and the term structure) other risk factors
to influence the recovery payment (see part (b) of Figure 1). For example these
additional factors can characterize the uncertain costs of financial distress or the
uncertain time delay of the promised recovery payment. Thus in this model the
default time and the interest rate level do not uniquely determine the recovery
payment.

3An LRM-hedge also solves the problem

EP
[
(∆Ct(H))

2 |Gt−1

]
→ min for all t = 1, . . . ,T and H ∈ H with VT (H) = FT ,

where ∆Ct(H) = ∆Ct(H)/Bt denotes the discounted growth of the hedging costs and Bt is the

value of the money market account at time t.

5



Figure 1: Single-stochastic versus doubly-stochastic recovery.

Part (a) of this figure depicts the price process of a credit derivative with a recovery

payment depending only on the default time (”l” denotes liquidity, ”b” bankruptcy) and

the term structure (”u” denotes an up-tick and ”d” a down-tick of the interest rate).

Conditional on default (and the given term structure) the recovery payment is known. The

latter is not the case if the recovery payment is doubly-stochastic. Part (b) of the figure

shows that conditional on default (and the given term structure) the recovery payment

can take on m different values Z1, . . ., Zm.

(a) Price process when recovery is single-stochastic.

F0

F1(u,b)

F1(u,l)

F1(d,b)

F1(d,l)

F2(u,lb) = Z2(u)

F2(u,b) = Z1(u)

F2(u,ll) = F (u)

F2(d,b) = Z1(d)

F2(d,lb) = Z2(d)

F2(d,ll) = F (d)

(b) Price process when recovery is doubly-stochastic.

F0

F1(u,b,1)
...

F1(u,b,m)

...

F1(u,l)

F1(d,b,1)
...

F1(d,b,m)

...

F1(d,l)

F2(u,b,1) = Z1(u)
...

F2(u,b,m) = Zm(u)

...

F2(u,lb,1) = Z1(u)
...

F2(u,lb,m) = Zm(u)

...

F2(u,ll) = F (u)

F2(d,b,1) = Z1(d)
...

F2(d,b,m) = Zm(d)

...

F2(d,lb,1) = Z1(d)
...

F2(d,lb,m) = Zm(d)

...

F2(d,ll) = F (d)
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Figure 2 already illustrates the key result of this paper: the locally risk-minimizing
hedging strategy for the credit derivative is the same for single- and doubly-
stochastic recovery modeling, provided that the expected doubly-stochastic recovery
payment conditional on the default time (and the term structure) coincides with the
single-stochastic recovery payment conditional on the default time (and the interest
rate level).

Figure 2: LRM-strategy when recovery is doubly-stochastic.

When recovery is doubly-stochastic the payment at default does not only depend on the

default time and the interest rate level but also on another risk factor. Different realizations

of this risk factor are denoted by the superscript j in the state ωj
i where the subscript

i denotes different states of the world influencing the underlying instrument. Since the

underlying (say, shares of common stock of the firm, or a corporate zero-bond with total

loss at default written on the underlying firm) does not depend on the additional factor,

its discounted price is always zero at default, Xt(ω
1
1) = Xt(ω

2
1) = . . . = 0. The symbol

” ◦ ” describes a possible realization of the discounted value of the hedge portfolio. To

determine the LRM-hedge we have to run a regression for the five value tuples represented

by the ◦-symbol. Alternatively, we can calculate in a first step the average value of the

hedge portfolio Vt(H)(ω1
1)/Bt = Vt(H)(ω2

1)/Bt = . . ., conditional on the default event

occurring. The latter pairs of values are denoted with the ” • ” symbol. In a second step,

we identify the slope for the regression line for the points ” • ” (only two tuples, as you

can see) which equals the slope of the first regression.

✻

✲

Discounted Value of
Hedge Portfolio Vt(H)/Bt

Discounted Value
of Underlying Xt

Vt(H)(ωj
1)/Bt

Vt(H)(ω1
1)/Bt

Vt(H)(ω3
1)/Bt

Vt(H)(ω2
1)/Bt

Vt(H)(ω4
1)/Bt

Vt(H)(ω2)/Bt

Xt(ω2)Xt(ω
j
1)

”Insolvent” ”Solvent”

hX
t Xt + hB

t
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The insight provided by Figure 2 can be proven in a more formal way. We show that
the single-stage regression approach (delivers the LRM-hedge of a defaultable claim
assuming doubly-stochastic recovery) and a two-stage procedure (delivers the LRM-
hedge of a defaultable claim assuming single-stochastic recovery which coincides at
any default time with the expectation of the doubly-stochastic recovery conditional
on the default time) provide the same result. With the conventions pi =

∑
j p(ωj

i ),

X t(ω
j
i ) =

∑
k Xt(ω

k
i )p(ωk

i )/pi, and Vt(H)(ωj
i ) =

∑
k Vt(H)(ωk

i )p(ωk
i )/pi for all j,

we obtain

EP [Vt(H)|Gt−1] =
∑

i,k

p(ωk
i )Vt(H)(ωk

i ) =
∑

i

piVt(H)(ωj
i ) = EP [Vt(H)|Gt−1] ,

and in an analogous manner EP [(Xt)
2|Gt−1] = EP

[
(X t)

2|Gt−1

]
, EP [Xt|Gt−1] =

EP [X t|Gt−1], EP [Vt(H)Xt|Gt−1] = EP [X tVt(H)|Gt−1]. From this, it follows that
the hedge ratio (slope of the regression line) and the shares in the money market
account (intercept of the regression line) of the one-stage regression approach,

hS
t =

CovP [Vt(H),Xt|Gt−1]

VarP [Xt|Gt−1]Bt

and hB
t =

EP [Vt(H)|Gt−1]

Bt

− hS
t EP [Xt|Gt−1] ,

coincide with these of the two-stage procedure:

hS
t =

CovP [Vt(H),Xt|Gt−1]

VarP [Xt|Gt−1]Bt

and hB
t =

EP [Vt(H)|Gt−1]

Bt

− hS
t EP [X t|Gt−1] .
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3 Hedging in Reduced-Form Models

Below we will determine hedging strategies for credit derivatives, e.g. defaultable
bonds and credit default swaps. We envision a situation where a hedger owns
a portfolio of such credit derivatives and tries to hedge this portfolio against all
kinds of risk, namely default risk, interest rate risk and recovery rate risk. Suitable
hedging instruments are then money market accounts, CDSs, junior bonds and so
on.

In the following we assume that the hedger tries to hedge a short position in a
coupon-paying defaultable bond. This defaultable bond delivers time-continuous
cash flows Ct in 0 ≤ t ≤ T as long as no default has occurred. If the firm is still
solvent at the time of maturity a payment F will also be paid. Otherwise the owner
of the credit derivative receives (in addition to the cash flow stream C during the
period [0,τ)) the uncertain recovery payment Z(τ) depending on default time t = τ

and paid out at t = T . We denote the defaultable coupon bond by (Z, C, F ).4 We
assume that the recovery amount does not exceed the remaining value of the credit
derivative’s cash flow when no default occurs:

0 ≤ Z(τ) ≤ BT

∫ T

τ

Ct/Bt dt + F P -a.s., (2)

where Bt = exp{
∫ t

0
rs ds} denotes the value of the money market account at time t

and P denotes the statistical probability measure. At any time t < τ , the recovery
payment for a credit event occurring at time τ = u has an expected value of µZ(u)

and a standard deviation of σZ(u) under P . Because of (2) we have also

0 ≤ µZ(u) ≤ BT

∫ T

u

Ct/Bt dt + F for 0 < u ≤ T.

For technical reasons we assume supu∈[0,T ] σ
Z(u) < ∞. Assumption (2) guarantees

that the value of the defaultable claim (Z, C, F ) is lower than the value of a default-

4When hedging a CDS, we have a different hedging situation. In this case, one hedges a claim

of the form (F − Z, − C, 0), since a CDS pays the difference between the recovery payment and

the promised face value, F − Z, and the buyer of the CDS does not receive but has to pay a

time-continuous premium.
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free but otherwise identical derivative (C, F ).
The cumulative value of the credit derivative at maturity amounts to

FT =

{
BT

∫ T

0
Ct/Bt dt + F , if τ > T

BT

∫ τ

0
Ct/Bt dt + Z(τ) , if τ ≤ T

.

The stochastic recovery rate of the credit derivative (Z, C, F ) is defined as follows:

δ(τ) =
BT

∫ τ

0
Ct/Bt dt + Z(τ)

BT

∫ T

0
Ct/Bt dt + F

=
C̃τ · BT + Z(τ)

C̃T · BT + F
∈ [0,1], (3)

where C̃t =
∫ t

0
Cs/Bs ds denotes the present value of the cash flow stream C during

[0,t] when default has not occurred until t. Relation (3) relates the final value of
the defaultable claim’s cash flows (Z, C, F ) to the final value of the default-free,
but otherwise identical derivative’s cash flows (C, F ).5 Because of assumption (2)
the recovery rate is lower than one. If the recovery only depends on the uncertain
default time and the interest level, we will call it single-stochastic. If it is subject
to another source of risk, we will denote the recovery doubly-stochastic.

We assume that the seller of this defaultable claim (Z, C, F ) can hedge his short
position with strategy H = (hX ,hB) consisting of hX defaultable zero bonds with
total loss in case of default and hB money market accounts. To simplify the follow-
ing presentation we start with a deterministic term structure, i.e. the short rate
(rt)t∈[0,T ] is a deterministic function of time.

3.1 A Simple Intensity Model

This section presents a simple intensity model in continuous time which describes a
possible default of a firm at time τ > 0 during the time horizon [0,T ]. Trading takes
place every time t ∈ [0,T ]. The credit event is specified in terms of an exogenous
jump process, the so-called default process Ht = 11{τ≤t}. In the following we assume
that H is an inhomogeneous Poisson process stopped at the first jump – the default
time:

P (τ ≤ t) = P (Ht = 1) = 1 − exp

{
−
∫ t

0

λ(s) ds

}
for every t ≥ 0 ,

5Bakshi, Madan and Zhang (2006, p. 22) define the recovery rate by means of the out-standing

payments. But the definition above simplifies the following formulae for the hedging strategies.
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where λ is a deterministic, non-negative function of time with
∫ T

0
λ(t) dt < ∞

representing the default intensity under the statistical probability measure P . The
model is based on a probability space (Ω,G,P ), where Ω denotes the state space in
the economy. The information available to the market participants at time t is given
by the filtration (Gt)t∈[0,T ] generated by the marked inhomogeneous Poisson process
HZ = (H, Z) stopped at the first jump: Gt = σ(HZ

t ) for t ∈ [0,T ]. X = (Xt)t∈[0,T ]

denotes the discounted price process of the traded defaultable zero coupon bond
with maturity date T and total loss in case of default given by

Xt =
1

BT

exp

{
−
∫ T

t

λ̂(s) ds

}
(1 − Ht) (4)

if financial markets are frictionless and arbitrage-free. The deterministic non-
negative function λ̂ with

∫ T

0
λ̂(t) dt < ∞ can be estimated via market values of

defaultable financial instruments6 and specifies the default intensity under the mar-
tingale measure Q ∈ Q. In particular,

EQ[Xt|Gs] = 11{τ>s} (Xt · Q(τ > t|τ > s) + 0 · Q(τ ≤ t|τ > s))

= (1 − Hs)
1

BT

exp

{
−
∫ T

t

λ̂(u) du

}
exp

{
−
∫ t

s

λ̂(u) du

}
= Xs .

The discounted price process X admits the decomposition X = X0 + A + M , since

dXt = λ̂(t)Xt−dt − Xt−dHt = Xt−(λ̂(t) − λ(t))dt − Xt−dH̃t

= dAt + dMt .

Here, H̃t = Ht −
∫ t∧τ

0
λ(s) ds denotes the compensated default process, A describes

the continuous drift component with A0 = 0, M denotes a square integrable P -mar-

tingale7 with M0 = 0, and finally X0 = exp
{
−
∫ T

0
λ̂(s) ds

}
/BT denotes the bond

price at t = 0. Due to properties of the conditional quadratic variation (see, e.g.,
Protter (1990)) it follows that

d〈M〉t = X2
t−d〈H̃〉t = X2

t−λ(t)d(t ∧ τ) = X2
t∧τ−λ(t)d(t ∧ τ) .

Since dAt = Xt−(λ̂(t) − λ(t))dt = Xt∧τ−(λ̂(t) − λ(t))d(t ∧ τ) we obtain

At =

∫ t

0

α̃s d〈M〉s with α̃t =
1

Xt∧τ−

(
λ̂(t)

λ(t)
− 1

)
,

6See, e.g., Jarrow and Turnbull (1995) and Jarrow, Lando and Turnbull (1997).
7Since the process H̃ is a square integrable martingale with [H̃,H̃ ] = H and since the process

X− is predictable with EP [
∫ T

0 X2
t− d[H̃,H̃ ]t] = EP [

∫ T

0 X2
t− dHt] < ∞, M is also a square integrable

martingale (see Protter, 1990, p. 142).
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and therefore X = X0 +
∫

α̃ d〈M〉 + M .

Now we determine hedging strategies for defaultable claims which minimize the risk
locally. More precisely, we solve Problem 2 as stated in the appendix. This rather
technical formulation is due to Schweizer (1991) and can be seen as continuous-time
analogue of Problem 1. To identify the LRM-hedge for credit derivatives we use the
minimal martingale measure8 P̂ defined by the density 9

Ẑt = E
{
−
∫

α̃ dM

}

t

= E
{∫ t∧τ

0

(
λ(s) − λ̂(s)

)
ds +

(
λ̂(τ)

λ(τ)
− 1

)
Ht

}

=

{
exp{

∫ t

0
(λ(s) − λ̂(s)) ds} , if t < τ,

λ̂(τ)
λ(τ)

exp{
∫ τ

0
(λ(s) − λ̂(s)) ds} , if t ≥ τ.

(5)

Thus the distribution of the recovery payment remains unaffected by the measure
change and the default intensity under P̂ is given by λ̂.10

The discounted value of the recovery payment under the assumption that the stock
price jumps to/or reaches a pre-specified value when the credit event occurs time t,
conditional on the event that default takes place in (t,T ] is given by the deterministic
function

gZ
t = Ê

[
1

BT

µZ(τ)11{τ≤T}

∣∣τ > t

]

=
1

BT

Ê
[
µZ(τ)11{τ≤T}

∣∣t < τ ≤ T
]
· P̂ (τ ≤ T |τ > t)

=
1

BT

∫ T

t

exp

{
−
∫ u

t

λ̂(s) ds

}
λ̂(u)µZ(u) du. (6)

Likewise, the discounted value gF of the payment F being paid out in case of no
default up to time T and the discounted value gC of the future coupon payments of

8The notion "minimal martingale measure" is motivated by the fact that apart from turning

X into a martingale this measure disturbs the overall martingale and orthogonality structures as

little as possible.
9For evaluating the stochastic exponential see, e.g., Protter (1990, p. 77).

10More precisely, from Theorem T 2 in Brémaud (1981, p. 165f.) it follows that (5) coincides

with the density corresponding to the measure change from P to Q. Hence, we have P̂ ≡ Q.
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the credit derivative being paid out until the time of default are, respectively, given
by

gF
t =

1

BT

exp

{
−
∫ T

t

λ̂(s) ds

}
· F, (7)

gC
t =

∫ T

t

Cu

Bu

exp

{
−
∫ u

t

λ̂(s) ds

}
du. (8)

Due to the results of Schweizer (1991) and with the convention

V F
t = Ê[FT /BT |Gt]

Lemma 1 provides the LRM-hedge ratio via the Föllmer-Schweizer-decomposition,
see Föllmer and Schweizer (1991).

Lemma 1 (FS-Decomposition of a Credit Derivative)

The discounted cumulative value FT /BT of the credit derivative (Z, C, F ) at matu-

rity has the following strong Föllmer-Schweizer-decomposition:

V F
T = FT /BT = F0 +

∫ T

0

hX
t dXt + LF

T ,

where

hX
t =

d〈V F ,X〉t
d〈X ,X〉t

=

{
gC

t−
+gF

t−
+gZ

t−

Xt−
− µZ(t)

BT Xt−
: t ≤ τ,

0 : t > τ,

is the locally risk-minimizing hedge ratio, F0 = gC
0 + gF

0 + gZ
0 is a constant, and LF

is a martingale which is orthogonal to M , given by LF
t =

∫ t

0
1

BT
(Z(s)− µZ(s)) dH̃s.

3.2 Single-Stochastic Recovery Payment

We first consider the case of a single-stochastic recovery payment, i.e. Z(t) is a
deterministic function of time. The discounted recovery payment expected at time
t under the martingale measure Q, given the credit event takes place in (t,T ] is
represented by the deterministic function

gZ
t = EQ

[
1

BT

µZ(τ)11{τ≤T}

∣∣τ > t

]
=

1

BT

∫ T

t

exp

{
−
∫ u

t

λ̂(s) ds

}
λ̂(u)Z(u) du. (9)

Replacing µZ(t) by Z(t) in Lemma 1 results in

13



Proposition 1 (Replication for Single-Stochastic Recovery)

The credit derivative (Z, C, F ) with single-stochastic recovery is duplicated by the

hedging strategy H = (hX ,hB) with

hX
t =

gC
t− + gF

t− + gZ
t−

Xt−
− Z(t)

BT Xt−
,

hB
t = Vt(H)/Bt − hX

t Xt− = C̃t + Z(t)/BT ,

for t ≤ τ , and hX
t = 0, hB

t = hB
τ for t > τ .

According to this duplication strategy at every point in time t the value of the
money market accounts equals the cumulative value of the credit derivative in the
case of default at time τ = t. The value of the position in the defaultable zeros at
time t < τ equals the discounted expected future payments of the credit derivative
less the discounted recovery payment in the case of default at time t, i.e.

hX
t Xt = gC

t− + gF
t− + gZ

t− − Z(t)

BT

.

It is worth mentioning that, see Müller (2008), in the special case when the recovery
rate is constant, δ(u) = δ for all default times τ = u, the expected recovery rate
given that default occurs in (t,T ], denoted by µ̃δ(t), is given by

µ̃δ(t) = δ

∫ T

t

λ̂(u) exp

{
−
∫ u

t

λ̂(s)ds

}
du

= δ

[
− exp

{
−
∫ u

t

λ̂(s)ds

}]T

t

= δ(1 − XtBT ), (10)

and it will then be possible to replicate the credit derivative (Z, C, F ) with single-
stochastic recovery by a static hedge: Buy

hX = (1 − δ)(C̃TBT + F )

defaultable zero bonds (with total loss in case of default) and buy

hB = δ(C̃T + F/BT )

money market accounts.
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3.3 Doubly-Stochastic Recovery Payment

We now consider the case of a doubly-stochastic recovery payment, i.e. Z now
is a stochastic process. Every probability measure Q ∈ Q with corresponding
default intensity λ̂ and arbitrary distribution of the recovery rate with values in [0,1]

represents an equivalent martingale measure if the null sets of the distribution of the
recovery rate under Q and P are the same. The financial market will be arbitrage-
free. But it will be incomplete if the recovery rate is not known P -a.s. given that
default occurs in τ = t. For this reason defaultable claims with a doubly-stochastic
recovery can not be duplicated. The incompleteness of the financial market model
can also be recognized as follows: There are two sources of risk – the default time
and the amount of the recovery are uncertain. But there exists only one financial
instrument (besides the money market account) for hedging the default risk.

Proposition 2 (LRM-Hedge)

The locally risk-minimizing hedge of the credit derivative (Z, C, F ) amounts to

hX
t =

gC
t− + gF

t− + gZ
t−

Xt−
− µZ(t)

BT Xt−
,

hB
t = V F

t− − hX
t Xt− = C̃t + µZ(t)/BT ; .

After default, i.e. for t > τ , we have

hX
t = 0 , hB

t = C̃τ + Z(τ)/BT .

In the case of a defaultable claim with single-stochastic recovery the locally risk-

minimizing hedge collapses to the duplication strategy given in Proposition 1.

According to this duplication strategy at every point in time t the value of the
money market accounts equals the cumulative value of the credit derivative in the
case of default at time τ = t. At default the share in the money market account
makes a jump in the amount of (Z(τ) − µZ(τ))/BT such that the value of the
hedging strategy at maturity coincides with the discounted cumulative value of the
credit derivative. The value of the position in the defaultable zeros at time t < τ

equals the discounted expected future payments of the credit derivative less the
discounted expected recovery payment in the case of default at time t, i.e.

hX
t Xt = gC

t− + gF
t− + gZ

t− − µZ(t)

BT

.

15



Because of the relation C(H) = V F
0 + LF the LRM-hedge is self-financing at every

point in time before and after default. But at default money accrues or flows out,
depending on the difference between realized recovery payment, Z(τ), and the ex-
pected payment at default, µZ(τ). On average, the locally risk-minimizing hedging
strategy is self-financing, that is, the strategy is mean-self-financing.

If the recovery is single-stochastic the LRM-hedge will even be self-financing and
therefore will collapse to a replication strategy. For the special case, see Müller
(2008), that the expected recovery rate does not depend on the default time, i.e.
µδ(u) = µδ at 0 < u ≤ T , and hence µ̃δ(t) = µδ(1 − BT Xt−) for t ≤ τ , the locally
risk-minimizing hedge simplifies to a static hedge:

H = (hX ,hB) = ( (C̃TBT + F )(1 − µδ), (C̃T + F/BT )µδ ) .

Proposition 2 shows that the locally risk-minimizing hedge depends only on the
expected payment at default under the statistical probability measure, but not on
other details of the probability distribution of the recovery. Hence we achieve the
following result:

Proposition 3 (Impact of Recovery Modeling on LRM-Hedge)

The LRM-hedge for a credit derivative (Zd,C,F ) with a doubly-stochastic recov-

ery equals the LRM-hedge for a defaultable claim (Zs, C, F ) with single-stochastic

recovery for all points in time until default, provided that the expected recovery

payments coincide under the statistical probability measure, i.e. µZd

(u) = µZs

(u) =

Zs(u) for every 0 < u ≤ T .

Example 1 We consider a financial market where a defaultable zero bond of a firm
with total loss at default and maturity 10 years is traded. Furthermore, we assume
a flat term structure with r = 5 %. Default time is exponentially distributed with
intensity λ = 0,05 and λ̂ = 0,20 under the statistical probability measure and the
martingale measure, respectively. We now calculate hedging strategies of a default-
able zero bond with recovery payment at default. We assume a single-stochastic,
even constant recovery rate of δs = 40 %, and a doubly-stochastic recovery rate
with an expected value of µδd

= 40 %.

Figure 3 shows the locally risk-minimizing hedging strategy of a zero with single-
and doubly-stochastic recovery. We assume, that the firm defaults after 5 years and
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Figure 3: LRM-hedges when default occurs at τ = 5

The left figure illustrates the LRM-hedge for a defaultable zero bond with constant

recovery. This hedge corresponds to the duplication. The right figure depicts the

LRM-hedge for a defaultable zero bond with an uncertain recovery payment when default

occurs after five years with a realized recovery rate of 50 %. The solid line describes the

hedge ratio hX and the dashed line the number of money market accounts hB during time.
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that the realized recovery rate amounts to 50 % in the case of doubly-stochastic
recovery modeling. According to Proposition 3 the LRM-hedges are equal until
default for both the single- and the doubly-stochastic recovery case. After the
credit event the shares in the money market account of the locally risk-minimizing
strategies differ since the realised payments at default are different.

If an investor prefers a self-financing hedging strategy, the so-called super-hedging

strategy which assures a liquidation value at maturity at least as high as the pay-
off of the derivative, i.e. VT (H) ≥ FT P -a.s., then the recovery modeling has the
following impact on the hedging strategy. Assuming a constant recovery payment
of 0,40 the super-hedge corresponds to the duplication strategy H = (hX ,hB) =

(0,60; 0,40/BT ) as well as the LRM-hedge. If the payment at default is uncertain,
the super-hedge depends on the distribution of the recovery, more precisely, on
the domain of the recovery payment. Assuming that the recovery payment can
reach values on [0, 1] and [0, 0,95], respectively, the resulting super-hedges are H =

(hX ,hB) = (0; 1/BT ) and H = (hX ,hB) = (0,05; 0,95/BT ), respectively. �
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4 Extensions

Closed-form solutions of hedging strategies for credit derivatives are rare in the
literature. For instance, Bielecki et al. (2008) prove the existence of a hedging
strategy for a credit derivative (Z, C, F ) in a general setup (including both stochastic
interest and stochastic default rates), but do not provide the hedge ratio in closed-
form. Biagini and Cretarola (2009) derive locally risk-minimizing strategies, but
give closed-form solutions only for the special case of null interest rates, no coupon
payments and a predictable, hence single-stochastic recovery payment.

So far, the recovery payment and the time of default were the only random quantities
in our model as well. In Section 4.1, we derive the LRM-strategy in case the interest
rate is also stochastic while in Section 4.2 we consider the case of a stochastic default
intensity instead. In Section 4.3, r and λ̂ are then assumed to be both stochastic
but independent. This independence assumption, however, will turn out to be no
major restriction.

4.1 Stochastic Interest Rates

We now extend our basic model to the case of a non-trivial reference filtration
to investigate to what extent the hedging strategy will be affected. Due to this
additional source of risk, we now have Gt = Ft ∨Ht, where Ft describes the time-t
information about the evolution of the interest rate and the default rate and Ht

describes the time-t market information about whether default has occured and the
recovery risk. In particular, we assume Ft = σ(Wt) for some Brownian motion W .

Consider the (Ft)-martingale

mt = Ê

[
1

BT

∫ T

0

exp

{
−
∫ u

t

λ̂(s) ds

}
λ̂(u)µZ(u) du

+ exp

{
−
∫ T

0

λ̂(s) ds

}
· F

BT

+

∫ T

0

1

Bu

exp

{
−
∫ u

t

λ̂(s) ds

}
dCu

∣∣Ft

]
.

Denote by ξ the predictable process appearing in the martingale representation of
the process m, i.e.

mt = m0 +

∫ t

0

ξs dŴs, (11)

Lemma 2 provides the LRM-hedge ratio via the Föllmer-Schweizer-decomposition
in case the reference filtration (Ft) is non-trivial.
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Lemma 2 (FS-Decomposition in case of a Brownian Reference Filtration)

The discounted cumulative value FT /BT of the credit derivative (Z, C, F ) at matu-

rity has the following strong Föllmer-Schweizer-decomposition:

V F
T = FT /BT = F0 +

∫ T

0

hX
t dXt + LF

T ,

where

hX
t =

d〈V F ,X〉t
d〈X ,X〉t

= (1 − Ht)

(
exp

{∫ t

0

λ̂(s) ds

}
· ξt

σ(t)Xt−

+
gC

t− + gF
t− + gZ

t−

Xt−

− µZ(t)

Ê[BT |Ft]Xt−

)
,

is the locally risk-minimizing hedge ratio, F0 = gC
0 + gF

0 + gZ
0 is a constant, and LF

is a martingale which is orthogonal to M , given by LF
t =

∫ t

0
1

BT

(Z(s)− µZ(s)) dH̃s.

Proposition 4 (LRM-Hedge in case of a Brownian Reference Filtration)

In case of stochastic interest rates, the locally risk-minimizing hedging strategy of

the credit derivative (Z,C,F ) is given by

hX
t = exp

{∫ t

0

λ̂(s) ds

}
· ξt

σ(t)Xt−
+

gC
t− + gF

t− + gZ
t−

Xt−
− µZ(t)

Ê[BT |Ft]Xt−

,

hB
t = V F

t− − hS
t Xt−,

for t ≤ τ , and

hX
t = 0,

hB
t =

∫ τ

0

1

Bs

dCs + Ê

[
1

BT

∣∣Ft

]
Zτ ,

for t > τ .

From Proposition 4 we see that the LRM-hegde will be given explicitly, if we can
find an explicit representation of the process ξ.

Suppose now that the interest rate follows a stochastic process while the default
rate is a deterministic function. The P̂ -dynamics of the defaultable zero bond are
then given by

dXt = λ̂(t)Xt−dt + σ(t)Xt−dŴt − Xt−dHt,
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and we thus have

d〈X,X〉t = d〈M,M〉t = σ2(t)X2
t−d〈W 〉t + X2

t−d〈H̃〉t
=

(
σ2(t) + λ̂(t)

)
X2

t−dt.

For gZ , gF and gC, we have

gZ
t = Ê

[
1

BT

∣∣Ft

] ∫ T

t

exp

{
−
∫ u

t

λ̂(s) ds

}
λ̂(u)µZ(u) du, (12)

gF
t = Ê

[
1

BT

∣∣Ft

]
exp

{
−
∫ T

t

λ̂(s) ds

}
· F, (13)

gC
t = Ê

[∫ T

t

1

Bu

exp

{
−
∫ u

t

λ̂(s) ds

}
dCu

∣∣Ft

]
, (14)

respectively.

Example 2 Suppose the short rate follows the CIR model under the minimal
martingale measure, i.e.

drt = κr(θr − rt)dt + σr√rtdŴt,

where κr, θr, σr, r0>0.

Thus

Ê

[
1

BT

∣∣Ft

]
= exp

{
−
∫ t

0

rs ds − rtC(t,T ) − D(t,T )

}
, (15)

where,

C(t,T ) =
sinh(γr(T − t))

γr cosh(γr(T − t)) + 1
2
κr sinh(γr(T − t))

, (16)

D(t,T ) = − 2κr

(σr)2
ln

(
γre

1

2
κr(T−t)

γr cosh(γr(T − t)) + 1
2
κr sinh(γr(T − t))

)
, (17)

γr = 1
2

√
(κr)2 + 2(σr)2, sinh u = eu−e−u

2
, and cosh u = eu+e−u

2
.

Defining Gt = exp{−
∫ t

0
λ̂(s) ds} for all t, we have

mt = Ê

[
1

BT

∣∣Ft

]
·
(

GT · F +

∫ t

0

Gs λ̂(s) µZ(s) ds

)

+

∫ t

0

Gs

Bs

dCs +

∫ T

t

Ê

[
1

Bs

∣∣Ft

]
Gs dCs

=: u(t,rt).
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From Proposition A.1, it follows that the process ξ is given by

ξt = σr√rt

∂

∂r
u(t,rt)

= σr√rt ·
[
−C(t,T )Ê

[
1

BT

∣∣Ft

](
GT · F +

∫ T

0

Gs λ̂(s) µZ(s) ds

)

−
∫ T

t

C(t,s)Ê

[
1

Bs

∣∣Ft

]
Gs dCs

]
.

Hence, the hedging strategy is given explicitly.
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Figure 4: Initial hedge ratio as a function of the interest rate level.

The figure shows the initial hedge ratio as a function of the interest rate level for an

expected recovery payment of µZ = 20 (solid lines), µZ = 50 (dashed lines) and µZ = 80

(dashed-dotted lines). The blue graphs illustrate the case of deterministic interest rates

for parameters t = 0, T = 1, λ̂ = 2, C = 7 and F = 100. The red graphs illustrate the

case of stochastic interest rates with CIR dynamics for parameters κr = 0.5, θr = 0.05

and σr = 0.2.
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Figure 4 shows the hedge ratio of the locally risk-minimizing strategy as a function of
the interest rate level. One can see that treating the interest rate, that is stochastic
in reality, as a constant will decrease the number of zeros (with total loss in case
of default) held in the hedging strategy below the optimal level, hence leading to
a position less risky than necessary. The converse holds for the position in the
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money market account. From Figure 5 we can tell that this position is higher in
the deterministic interest rates case.

Figure 5: Initial position in the money market account as a function of the interest

rate level.

The figure shows the initial position in the money market account as a function of the

interest rate level for an expected recovery payment of µZ = 20 (solid lines), µZ = 50

(dashed lines) and µZ = 80 (dashed-dotted lines). The blue graphs illustrate the case

of deterministic interest rates for parameters t = 0, T = 1, λ̂ = 2, C = 7 and F = 100.

The red graphs illustrate the case of stochastic interest rates with CIR dynamics for

parameters κr = 0.5, θr = 0.05 and σr = 0.2.
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From Figure 6 we see that the second effect outweighs the first, i.e. the value
of the credit derivative is overestimated in the deterministic interest rates model.
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Therefore, modeling the interest rate as a stochastic process will reduce the hedging
costs and thus improve the hedging quality.

Figure 6: Initial portfolio value as a function of the interest rate level.

The figure shows the initial portfolio value as a function of the interest rate level for an

expected recovery payment of µZ = 20 (solid lines), µZ = 50 (dashed lines) and µZ = 80

(dashed-dotted lines). The blue graphs illustrate the case of deterministic interest rates

for parameters t = 0, T = 1, λ̂ = 2, C = 7 and F = 100. The red graphs illustrate the

case of stochastic interest rates with CIR dynamics for parameters κr = 0.5, θr = 0.05

and σr = 0.2.
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4.2 Stochastic Intensities

Suppose now that the default rate follows a stochastic process while the interest
rate is a deterministic function. The P̂ -dynamics of the discounted defaultable risky
asset price are then given by11

dXt = λ̂tXt−dt +
1

Bt

LΛ
t−dmt − Xt−dHt,

where the processes LΛ and m are given by

LΛ
t = 11{τ>t}

1

P̂ (τ > t|Gt)
= 11{τ>t} exp{Λt},

mt = Ê

[
Bt

BT

P̂ (τ > t|Gt)
∣∣Gt

]
=

Bt

BT

Ê
[
exp {−ΛT}

∣∣Gt

]
,

and where Λ denotes the cumulative intensity process, i.e.

Λt =

∫ t

0

λ̂s ds.

In particular, the conditional survival probability is given by

P̂ (τ > t|Gt) = exp{−Λt}.

and we have
d〈X,X〉t = λ̂t Xt−dt.

For gZ , gF and gC, we now have

gZ
t =

1

BT

Ê

[∫ T

t

exp

{
−
∫ u

t

λ̂sds

}
λ̂u

∣∣Gt

]
µZ(u) du, (18)

gF
t =

1

BT

Ê

[
exp

{
−
∫ T

t

λ̂s ds

} ∣∣Gt

]
· F, (19)

gC
t =

∫ T

t

1

Bu

Ê

[
exp

{
−
∫ u

t

λ̂s ds

} ∣∣Gt

]
dCu, (20)

respectively.

11Using Proposition 2 in Blanchet-Scalliet and Jeanblanc (2004), this result is a direct conse-

quence of the fact that r and λ̂ are independent.
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Example 3 Suppose now that it is the intensity that follows the CIR model under
the minimal martingale measure, i.e.

dλ̂t = κλ̂(θλ̂ − λ̂t)dt + σλ̂

√
λ̂tdŴt,

where κλ̂, θλ̂, σλ̂, λ̂0 > 0. Thus

Ê

[
exp

{
−
∫ T

0

λ̂s ds

} ∣∣Ft

]
= exp

{
−
∫ t

0

λ̂s ds − λ̂tC(t,T ) − D(t,T )

}
, (21)

where C(t,T ) and D(t,T ) are given by (16) and (17) with σr replaced by σλ̂ and

γλ̂ = 1
2

√
(κλ̂)2 + 2(σλ̂)2.

Defining Gt = P̂ (τ > t|Ft) for all t, we have

mt =
F

BT

Ê[Gs|Ft] +
1

BT

∫ T

0

Ê[Gsλ̂s|Ft]µ
Z(s) ds +

∫ T

0

1

Bs

Ê[Gs|Ft] dCs

=: u(t,rt).

From Brigo and Mercurio (2006, p. 822), we get

Ê[Gsλ̂s|Ft]

= − ∂

∂s
Ê[Gs|Ft]

= Ê[Gs|Ft] ·
[(

1 − κλ̂C(t,s) +
(σλ̂)2

2
C2(t,s)

)
λ̂t + κλ̂θλ̂C(t,s)

]
(22)

From Proposition A.1, it follows that the process ξ is given by

ξt = σr

√
λ̂t

∂

∂λ̂
u(t,λ̂t)

= σr

√
λ̂t ·

[
−C(t,T )

F

BT

Ê[GT |Ft] +
1

BT

∫ T

t

∂

∂λ̂
Ê[Gsλ̂s|Ft]µ

Z(s) ds

−
∫ T

t

C(t,s)
1

Bs

Ê[Gs|Ft] dCs

]

Since

∂

∂λ̂
Ê[Gsλ̂s|Ft]

= −C(t,s) · Ê[Gsλ̂s|Ft] + Ê[Gs|Ft] ·
(

1 − κλ̂C(t,s) +
(σλ̂)2

2
C2(t,s)

)
, (23)
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the hedging strategy is again given explicitly. �

Figure 7 shows the hedge ratio of the locally risk-minimizing strategy as a function
of the intensity. One can see that the hedge ratio is an increasing function of the
default rate, which might seem counterintuitive at first glance, since the higher the
default rate, the higher the probability that the hedging instrument jumps to zero
and becomes worthless. However, a higher intensity also means it is more likely
that the investor (who is short in the credit derivative) will not have to pay the face
value F but only the lower recovery payment Z.

Figure 7: Initial hedge ratio as a function of the intensity.

The figure shows the initial hedge ratio as a function of the default rate for an expected

recovery payment of µZ = 20 (solid lines), µZ = 50 (dashed lines) and µZ = 80

(dashed-dotted lines). The blue graphs illustrate the case of deterministic default rates

for parameters t = 0, T = 1, r = 0.05, C = 7 and F = 100. The red graphs illustrate the

case of stochastic default rates with CIR dynamics for parameters κλ̂ = 0.5, θλ̂ = 2 and

σλ̂ = 0.4.
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For the same reason the hedge ratio is decreasing in the expected recovery payment
µZ . The higher the expected recovery payment, the more money has to be invested
in the money market account for the investor to be able to pay it after the position
in the zeros became worthless.

Figure 8: Initial position in the money market account as a function of the

intensity.

The figure shows the initial position in the money market account as a function of

the default rate for an expected recovery payment of µZ = 20 (solid lines), µZ = 50

(dashed lines) and µZ = 80 (dashed-dotted lines). The blue graphs illustrate the case of

deterministic default rates for parameters t = 0, T = 1, r = 0.05, C = 7 and F = 100.

The red graphs illustrate the case of stochastic default rates with CIR dynamics for

parameters κλ̂ = 0.5, θλ̂ = 2 and σλ̂ = 0.4.
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From Figure 7, one can see that modelling the default rate as a constant will gen-
erally (i.e. apart from the case of very low default rates) reduce the number of
defaultable zeros held in the hedging portfolio below the optimal level. The posi-
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tion in the money market account, however is not affected by level of the intensity,
see Figure 8. This is due to the fact that, at any time, the value of the position
in the money market account equals the cumulative value of the credit derivative if
default was to occur an instant from now. This is also why it is increasing in the
expected recovery payment.

Figure 9: Initial portfolio value as a function of the intensity.

The figure shows the initial portfolio value as a function of the default rate for an

expected recovery payment of µZ = 20 (solid lines), µZ = 50 (dashed lines) and µZ = 80

(dashed-dotted lines). The blue graphs illustrate the case of deterministic default rates

for parameters t = 0, T = 1, r = 0.05, C = 7 and F = 100. The red graphs illustrate the

case of stochastic default rates with CIR dynamics for parameters κλ̂ = 0.5, θλ̂ = 2 and

σλ̂ = 0.4.
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From Figure 9, we can see that, for low expected recovery rates, the portfolio
value in the deterministic and the stochastic intensity case lie close. For high
expected recovery payments, however, the portfolio value, and hence the value of the
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credit derivate, is underestimated in the deterministic intensity model. Therefore,
modeling the default rate as a stochastic process will, at least for low intensities,
i.e. for rare events, reduce the hedging costs and thus improve the hedging quality.

4.3 Stochastic Interest Rates and Stochastic Intensities

We now assume that both the interest and the default rate follow a stochastic
process and, in particular, that Ft = σ(W r

t ,W λ̂
t ) for two independent12 Brownian

motions.

The defaultable zero bond price follows the dynamics

dXt = (1 − Ht)λ̂tXt− dt + (1 − Ht)
1

BtGt

dmX
t − Xt−dHt,

where the process mX is now given by

mX
t = Ê

[
Bt

BT

GT

∣∣Ft

]
.

The martingale representations of the processes mX and m now take the form

mt = m0 +

∫ t

0

ξm,r
s dW r +

∫ t

0

ξm,λ̂
s dW λ̂,

mX
t = m0 +

∫ t

0

ξX,r
s dW r +

∫ t

0

ξX,λ̂
s dW λ̂,

for (Ft)-predictable processes ξ·,·.

Lemma 3 (FS-Decomposition, Case of a Two-Dimensional BM)

The discounted cumulative value V F
T of the credit derivative (Z, C, F ) at maturity

has the following strong Föllmer-Schweizer-decomposition:

V F
T = V F

0 +

∫ T

0

hX
t dXt + LF

T ,

12Brigo and Mercurio (2006, p. 817) consider the case of two correlated Brownian motions with

correlation coefficient ρ, i.e. dW rdW λ̂=ρdt, and show that there exists no explicit representation

of the zero bond price in case ρ 6= 0, but that the impact of ρ is negligible. Thus this independence

assumption is no major restriction.
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where

hX
t =

d〈V F ,X〉t
d〈X ,X〉t

= (1 − Ht)

(
Bt ·

ξm
t

ξX
t

+
gC

t− + gF
t− + gZ

t−

Xt−

− µZ(t)

Ê[BT |Ft]Xt−

)
,

is the locally risk-minimizing hedge ratio, V F
0 = gC

0 + gF
0 + gZ

0 is a constant, LF is

a martingale which is orthogonal to M , given by LF
t =

∫ t

0
1

BT

(Z(s) − µZ(s)) dH̃s,

and the processes ξm and ξX are given by

ξm = ξm,r
t + ξm,λ̂

t ,

ξX = ξX,r
t + ξX,λ̂

t .

This yields the LRM-strategy in case both the interest rate and the intensity are
stochastic.

Proposition 5 (LRM-Hedge, Case of a Two-Dimensional BM)

In case of stochastic interest rates, the locally risk-minimizing hedging strategy of

the credit derivative (Z,C,F ) is given by

hX
t = Bt ·

ξm
t

ξX
t

+
gC

t− + gF
t− + gZ

t−

Xt−
− µZ(t)

Ê[BT |Ft]Xt−

,

hB
t =

∫ t

0

1

Bs

dCs +
µZ(t)

Ê[BT |Ft]Xt−

− Bt ·
ξm
t

ξX
t

· Xt,

for t ≤ τ , and

hX
t = 0,

hB
t =

∫ τ

0

1

Bs

dCs + Ê

[
1

BT

∣∣Ft

]
Zτ ,

for t > τ .

Example 3 Suppose both the interest rate and the intensity follow a CIR-process,
i.e.

drt = κr(θr − rt)dt + σr√rtdŴ r
t ,

dλ̂t = κλ̂(θλ̂ − λ̂t)dt + σλ̂

√
λ̂tdŴ λ̂

t .
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The process m can be written

mt = Ê

[
GT

BT

F +

∫ T

0

Gs

BT

Zsλ̂sds +

∫ T

0

Gs

Bs

dCs

∣∣Ft

]

= F · Ê
[

1

BT

∣∣Ft

]
Ê
[
GT

∣∣Ft

]
+ Ê

[
1

BT

∣∣Ft

] ∫ T

0

Ê
[
Gsλ̂s

∣∣Ft

]
µZ(s) ds

+

∫ T

0

Ê

[
1

Bs

∣∣Ft

]
Ê
[
Gs

∣∣Ft

]
dCs

=: u(t,rt,λ̂t).

From Proposition A.2, it follows that the processes ξm,r and ξm,λ̂ are given by

ξm,r
t = σr√rt ·

∂

∂r
u(t,r,λ̂),

ξm,λ̂
t = σλ̂

√
λ̂t ·

∂

∂λ̂
u(t,r,λ̂).

Since

∂

∂r
u(t,r,λ̂)

= −Cr(t,T ) Ê

[
1

BT

∣∣Ft

]
·
(

F · Ê
[
GT

∣∣Ft

]
+

∫ T

0

Ê
[
Gsλ̂s

∣∣Ft

]
µZ(s) ds

)

−
∫ T

t

Cr(t,s) Ê

[
1

Bs

∣∣Ft

]
Ê
[
Gs

∣∣Ft

]
dCs

and

∂

∂λ̂
u(t,r,λ̂) = −C λ̂(t,T ) · F · Ê

[
1

BT

∣∣Ft

]
Ê
[
GT

∣∣Ft

]

+ Ê

[
1

BT

∣∣Ft

] ∫ T

0

∂

∂λ̂
Ê
[
Gsλ̂s

∣∣Ft

]
µZ(s) ds

−
∫ T

t

C λ̂(t,s) Ê

[
1

Bs

∣∣Ft

]
Ê
[
Gs

∣∣Ft

]
dCs,
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we have

ξm,r
t = σr√rt ·

[
−Cr(t,T ) Ê

[
1

BT

∣∣Ft

]

·
(

F · Ê
[
GT

∣∣Ft

]
+

∫ T

0

Ê
[
Gsλ̂s

∣∣Ft

]
µZ(s) ds

)

−
∫ T

t

Cr(t,s) Ê

[
1

Bs

∣∣Ft

]
Ê
[
Gs

∣∣Ft

]
dCs

]
, (24)

ξm,λ̂
t = σλ̂

√
λ̂t ·

[
−C λ̂(t,T ) · F · Ê

[
1

BT

∣∣Ft

]
Ê
[
GT

∣∣Ft

]

+ Ê

[
1

BT

∣∣Ft

] ∫ T

0

∂

∂λ̂
Ê
[
Gsλ̂s

∣∣Ft

]
µZ(s) ds

−
∫ T

t

C λ̂(t,s) Ê

[
1

Bs

∣∣Ft

]
Ê
[
Gs

∣∣Ft

]
dCs

]
, (25)

Since the process mX can be written

mX
t = Bt Ê

[
GT

∣∣Ft

]
Ê

[
1

BT

∣∣Ft

]

=: v(t,rt,λ̂t),

it follows from Theorem 15.4.1 in Bruti-Liberati and Platen (2010) that the pro-
cesses ξX,r and ξX,λ̂ are given by

ξX,r
t = σr√rt ·

∂

∂r
v(t,r,λ̂),

ξX,λ̂
t = σλ̂

√
λ̂t ·

∂

∂λ̂
v(t,r,λ̂).

Since
∂

∂r
v(t,r,λ̂) = −Bt Cr(t,T ) Ê

[
1

BT

∣∣Ft

]
Ê
[
GT

∣∣Ft

]
,

∂

∂λ̂
v(t,r,λ̂) = −Bt C λ̂(t,T ) Ê

[
1

BT

∣∣Ft

]
Ê
[
GT

∣∣Ft

]
,

we get

ξX,r
t = −σr√rt Cr(t,T ) Bt Ê

[
1

BT

∣∣Ft

]
Ê
[
GT

∣∣Ft

]
, (26)

ξX,λ̂
t = −σλ̂

√
λ̂t C λ̂(t,T ) Bt Ê

[
1

BT

∣∣Ft

]
Ê
[
GT

∣∣Ft

]
. (27)

Since one can plug (15), (21), (22) and (23) into (24)-(27), the hedging strategy is
again given explicitly. �
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5 Simulation of Hedging Costs

In this section, we run a simulation with 10,000 iterations to test the impact of
the different model assumptions on the cumulative hedging costs. We also test the
LRM-strategy against strategies using alternative hedging instruments such as CDS
contracts, CoCo-bonds, a defaultable zero coupon bond that trades at a stochastic
spread in the default intensity relative to the credit derivative we wish to hedge,
and a credit index.

If not specified otherwise, we use the following parameters: The credit deriva-
tive (C, F, Z) is assumed to pay an annualized coupon at rate c = 0.08 and to
have a promised payment of F = 100. The doubly-stochastic fraction of this pay-
ment recoverd in case of default is assumed to have a Beta (12, 12)-distribution, i.e.
µZ(t) = 50 for all t. We assume a maturity of T = 2 years and that the hedg-
ing strategies are adjusted on a weekly basis, i.e. we consider the trading dates
t0 = 0 < t1 < ... < tn = 2 with ti − ti−1 = 1/52 for all i = 1,...,104.

For the case of both deterministic interest and default rate, we use constant rates
of r = 0.05 and λ̂ = 0.35. To simulate the CIR-model for the stochastic interest
respectively default rate, we proceed as described by Glasserman (2003, p. 120ff.).
As is mentioned there, a simple Euler discretization of the form

r(ti+1) = r(ti) + κr(θr − r(ti)) · (ti+1 − ti) + σr
√

r(ti)(ti+1 − ti)Z
r
i+1

λ̂(ti+1) = λ̂(ti) + κλ̂(θλ̂ − λ̂(ti)) · (ti+1 − ti) + σλ̂

√
λ̂(ti)(ti+1 − ti)Z

λ̂
i+1,

where Zr
1 ,...,Z

r
n and Z λ̂

1 ,...,Z λ̂
n are independent standard normal random variables,

will still produce negative values, even if the expressions under the square root are
replaced by their positive parts. We therefore use the algorithm from Glasserman
(2003, p. 124) that allows to sample from the exact transition law of the processes.
The respective parameters are given by θr = 0.05, κr = 0.01, σr = 0.01 and
r0 = 0.05 for the interest rate and θλ̂ = 0.35, κλ̂ = 0.25, σλ̂ = 0.4 and λ̂0 = 0.35 for
the default rate. We first examine the basic model with both deterministic interest
and default rate. From Table 2 we see that the hedger, on average, faces nearly zero
additional costs apart from the initial investment in the amount of the initial value
V F

0 of the credit derivative (C, F, Z) to set up the strategy, i.e. the strategy is mean-
self-financing. Additional costs accrue if default occurs before maturity and the
doubly-stochastic recovery payment deviates from its expected value of µZ(t) = 50.
For instance, the highest cumulative hedging costs of 111.32 in the simulation are
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Table 2: Discounted cumulative hedging costs when hedging a defaultable coupon-paying bond.

Hedging Instruments

Total Costs Junior Bond Stock CDS Junior Bond
r,λ̂ determ. r stoch. λ̂ stoch. r&λ̂ stoch. stoch. spread

(Initial Costs) (78.68) (78.68) (80.13) (79.89) (78.68) (78.68) (78.68)
Mean 78.79 78.79 79.94 79.94 80.34 79.75 77.07

Std Dev 6.44 6.47 6.52 6.48 6.67 1.72 16.35
Skewness 0.15 0.37 0.62 0.55 -0.34 -1.42 -0.62
Kurtosis 5.37 5.36 5.37 5.43 4.99 10.12 3.32

Min 52.32 52.78 53.74 53.41 50.15 64.96 20.72
Max 111.32 112.73 113.30 113.93 110.57 90.14 106.91

99%-quantile 97.70 98.15 99.89 99.78 98.18 84.25 105.07
95%-quantile 90.73 91.15 92.88 92.56 91.39 81.87 102.53
90%-quantile 86.89 87.31 88.84 88.65 87.14 80.85 98.95
75%-quantile 78.89 79.40 81.36 81.38 82.87 80.13 86.86
50%-quantile 78.68 78.23 78.89 79.06 81.13 80.13 78.48
25%-quantile 78.68 77.76 77.52 77.66 78.57 79.76 69.28
10%-quantile 70.82 71.33 73.58 73.35 71.19 77.73 53.17
5%-quantile 67.00 67.46 69.39 69.17 67.37 76.27 44.04
1%-quantile 60.83 61.47 63.32 63.06 61.08 73.40 33.05
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due to realized recovery payment of 85.92. In this case, prior to default the position
hB

t in the money market account from Proposition 2 is far too low. Conversely,
the lowest cumulative hedging costs of 52.32 in the simulation correspond to a
realized recovery payment of only 20.75. In this case, the position in the money
market account was far too high. If no default occurs prior to maturity, the hedging
strategy reduces to the replication strategy in case of a single-stochastic recovery
payment. Hence the strategy is self-financing and no additional costs accrue, i.e.
the cumulative costs equal the initial costs of 78.68. In case only the interest rate
is stochastic, the hedging costs remain nearly unaffected, cf. Table 2, since the
interest rate risk is perfectly hedgeable, and the small differences in the hedging
costs are thus solely due to the discretization error. In contrast, if the default rate
is stochastic, the hedging costs are affected, especially in iterations where no default
occurs, i.e. when the hedging strategy is adjusted for variation in the intensity at
any trading date, but this this turns out to have been unnecessary since there is
no default. Moreover, the simulation results show that the hedging costs of the
LRM-strategy are only slightly higher in the practically more relevant case of using
stocks as the hedging instrument.

Let us now consider the alternative strategies. First, we consider the duplication
strategy using CDS contracts by Bielecki, Jeanblanc and Rutkowski (2007). This
strategy involves a short position in CDS contracts and a long position in the money
market account. In a continuous-time setting, it duplicates the claim to hedge, and
it can be seen from Table 2 that the hedging costs due to the discretization are very
small. The variance is smaller than for all other strategies considered and both the
minimum and the maximum costs are much closer to the expected costs, see also
part (a) of Figure 11. However, as mentioned by Bielecki, Jeanblanc and Rutkowski
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(2008, p. 2512f.), the strategy involves trading a CDS contract issued in the past,
i.e. an instrument that is not very liquid in practice.

Figure 10: Discounted cumulative hedging costs of LRM-strategy with defaultable

zero bond.

(a) Deterministic interest and default rate.
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(b) Stochastic interest rate and deterministic default rate.
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(c) Deterministic interest rate and stochastic default rate.
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(d) Stochastic interest rate and default rate.
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Figure 11: Discounted cumulative hedging costs for alternative hedging

instruments.
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(b) Stochastic Spread.
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Finally, we also consider two cross-hedging strategies. The first of them involves
a defaultable zero coupon bond that trades at a spread (in the default intensity)
relative to the credit derivative we wish to hedge. In particular, the default times
of the hedging instrument and the claim to hedge are independent in this case. The
stochastic spread is modelled as a CIR-process with mean 0.05, i.e. the default
probability of the hedging instrument is, on average, 5% higher (or lower) than
the default intensity of the credit derivative (Z, C, F ). Surprisingly, the sign of
the spread turned out to be irrelevant with regard to the discounted cumulative
hedging costs. More precisely, regardless of whether the spread is positive (as was
the case for the simulation shown in Table 2) or negative, the discounted cumulative
hedging costs will be smaller (77.09 compared to between 79 and 80 in the present
case). This is due to a decreasing position in the even riskier hedging instrument
in case of a positive spread, and due to the lower default probability of the hedging
instrument in case the spread is negative.
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6 Conclusion

There is overwhelming empirical evidence that recovery payments in case of default
do not only depend on time of default and the term structure but also on additional
sources of risk. Based on the concept of single-stochastic and doubly-stochastic
recovery payments introduced in this paper, we derive hedging strategies which are
locally risk minimizing (LRM). We denote the recovery rate as single-stochastic if
the recovery amount depends only on the default event and the interest rate. We
denote the recovery rate as doubly-stochastic if the recovery amount also depends
on the realization of another random variable. Corresponding model variants are
examined for the reduced-form model framework.

It turns out that the corresponding LRM-strategy is not only mean-self-financing
but also self-financing if the default recovery is single-stochastic. That is, as long as
the recovery amount is known in the event of default, there exists a self-financing
replication strategy for credit derivatives. Moreover, we find that in the more re-
alistic case of doubly-stochastic default recoveries, the LRM-hedging strategy does
only depend on the expected recovery amount, not on other characteristics of its
distribution. This key result of the paper helps to justify the simplifying assump-
tion frequently made when valuing and hedging credit derivatives, that the default
recovery is constant, conditional on the default event.

The key result also holds when replacing the zero coupon with total loss in case of
default by another hedging instrument. For instance, under the assumption that
the stock price jumps to/or reaches a pre-specified value when the credit event
occurs, one may also use common stocks. Moreover, and in contrast to the existing
literature, we derive explicit solutions for the hedge ratio even when all relevant
quantities are stochastic. In our simulations, it turns out that it is crucial to model
the default intensity as a stochastic process (in addition to a doubly-stochastic
recovery payment).

Our key insight still remains valid when replacing the LRM-concept by another
hedging concept which is based on a quadratic criterion. Moreover, it can be shown
that the key message also holds when dealing with structural models.
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A Appendix

Problem 2 (LRM-Hedge in continuous time)

A trading strategy H with VT (H) = FT P -a.s. is called locally risk-minimizing,

(LRM) for short, if it fulfills

lim inf
N→∞

rTN (H,∆) ≥ 0 PM -a.s.13

for every null-convergent sequence of partitions TN = {t0 = 0,t1, . . . ,tN = T} of

[0,T ], i.e. TN ⊂ TN+1 and limN→∞ maxi=1,...,N(tNi − tNi−1) = 0, and every disturbance

∆. Here a disturbance ∆ = (δ,ε) is a trading strategy, such that δT = εT = 0

and
∫ T

0
|δs| d|A|s is bounded. Furthermore, defining the remaining risk Rt(H) mea-

sured as the expected quadratic increase of the discounted hedging costs, Rt(H) =

EP
[
(CT (H) − Ct(H))2 |Gt

]
, the expression

rT (H,∆) =
n−1∑

i=0

Rti(H + ∆|(ti,ti+1]) − Rti(H)

EP [〈M〉ti+1
− 〈M〉ti |Gti ]

11(ti,ti+1]

denotes the risk quotient for a trading strategy H, a disturbance ∆ = (δ,ε) and the

partition T = {t0 = 0,t1, . . . ,tn = T}.

Hence, a trading strategy is locally risk-minimizing if a disturbance of the strategy
will increase the risk measured by the risk quotient.

Proof of Lemma 1.

In proving this result,Theorem 2.4 from Schweizer (1991) applies directly, provided
that the regularity conditions X(1) - X(5) are satisfied. From these five condi-
tions14,15 only X(2) is not satisfied since 〈M〉t = 0 for t > τ . Nonetheless, we can
apply the results from Schweizer (1991) since for t > τ the financial market is not
subject to any risk. In addition, Xt = 0 for t > τ .

13PM = P ×〈M,M〉 denotes the Doléans Dade measure of 〈M,M〉 on the product space Ω×[0,T ]

with the predictable σ-algebra.
14X(4) is satisfied if the default intensities fulfill the requirement EM [|α̃| log+(|α̃|)] < ∞. Here

EM [·] denotes the expectation under the Doléans-Dade measure PM = P × 〈M,M〉. If the de-

fault intensities fulfill for example the condition inft∈[0,T ] |λ̂(t)− λ(t)|/|λ(t)| > 0, the requirement

EM [|α̃| log+(|α̃|)] < ∞ holds.
15X(5) is satisfied since P (τ = T ) = 0 and XT is P -a.s. continuous at T .
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The following proof consists of two steps. In the first step we derive the locally
risk-minimizing hedge ratio hX

t , and in the second step we verify that LF is a
square-integrable martingale which is orthogonal to M . We have

V F
t = Ê[

FT

BT

|Gt]

= Ê

[(∫ T

0

Cs

Bs

ds +
F

BT

)
11{τ>T} +

(∫ τ

0

Cs

Bs

ds +
Z(τ)

BT

)
11{τ≤T}

∣∣Gt

]

= 11{τ≤t}

(∫ τ

0

Cs

Bs

ds +
Z(τ)

Ê[BT |Ft]

)
+ 11{τ>t}

∫ t

0

Cs

Bs

ds

+11{τ>t}Ê

[∫ T∧τ

t

Cs

Bs

ds + 11{τ>T}
F

BT

+ 11{τ≤T}
Z(τ)

BT

∣∣Gt

]

= HZ
t + 11{τ>t}

∫ t

0

Cs

Bs

ds

+11{τ>t}

∫ T

t

Cu

Bu

exp

{
−
∫ u

t

λ̂(s) ds

}
du

+11{τ>t}
1

BT

exp

{
−
∫ T

t

λ̂(s) ds

}
· F

+11{τ>t}
1

BT

∫ T

t

exp

{
−
∫ u

t

λ̂(s)ds

}
λ̂(u) µZ(u) du

= HZ
t + (1 − Ht)

(∫ t

0

Cs

Bs

ds + gC
t + gF

t + gZ
t

)
(A1)

where

HZ
t = 11{τ≤t}

(∫ τ

0

Cs

Bs

ds +
Z(τ)

BT

)
. (A2)

Thus

〈V F ,X〉t = 〈HZ ,X〉t +

〈
(1 − H)

∫ ·

0

1

Bs

ds,X

〉

t

(A3)

+
〈
(1 − H)gC,X

〉
t
+
〈
(1 − H)gF ,X

〉
t
+
〈
(1 − H)gZ ,X

〉
t
.

For the first term on the right-hand side of (A3),

[HZ ,X]t = HZ
t Xt −

∫ t

0

HZ
s−dXs −

∫ t

0

Xs−dHZ
s

= 0 − 0 − 11{τ≤t}Xτ− · ∆HZ
τ = −11{τ≤t}Xτ− · HZ

τ
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implies

d〈HZ ,X〉t = Ê
[
d[HZ ,X]t|Gt−

]

= −λ̂(t)Xt−

(∫ t

0

Cs

Bs

ds +
µZ(t)

Ê[BT |Ft]

)
dt

=
−
∫ t

0
Cs

Bs
ds − µZ(t)

Ê[BT |Ft]

Xt−
d〈X,X〉t.

Similarly, for the second term we get

d

〈
(1 − H)

∫ ·

0

Cs

Bs

ds,X

〉

t

= −d

〈
H

∫ ·

0

Cs

Bs

ds,X

〉

t

=

∫ t

0
Cs

Bs
ds

Xt−
d〈X,X〉t,

while for the remaining terms, we have

d
〈
(1 − H)gC,X

〉
t
=

gC
t−

Xt−
d〈X,X〉t,

d
〈
(1 − H)gF ,X

〉
t
=

gF
t−

Xt−

d〈X,X〉t,

d
〈
(1 − H)gZ ,X

〉
t
=

gZ
t−

Xt−
d〈X,X〉t,

respectively. Altogether, by (A3),

d〈V F ,X〉t =

(
− µZ(t)

Xt−BT

+
gC

t−

Xt−

+
gF

t−

Xt−

+
gZ

t−

Xt−

)
d〈X,X〉t,

so the locally risk-minimizing hedge ratio is given by

hX
t = − µZ(t)

Xt−BT

+
gC

t−

Xt−
+

gF
t−

Xt−
+

gZ
t−

Xt−

Since H0 = 0 and HZ
0 = 0,

F0 = Ê

[
FT

BT

∣∣G0

]
= gC

0 + gF
0 + gZ

0 , (A4)

by equation (A1).
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In the following we verify that LF is a square-integrable martingale with LF
0 = 0

which is P -orthogonal to M .

Since L0 = 0, supu∈[0,T ] σ
Z(u) < ∞ by assumption and

E[Ls|Gt]

= E

[
11{τ≤s}

1

BT

(
Zτ − µZ(τ)

) ∣∣Gt

]

= E

[(
11{τ≤t} + 11{t<τ≤s}

) 1

BT

(
Zτ − µZ(τ)

) ∣∣Gt

]

= 11{τ<t}
1

BT

(
Zτ − µZ(τ)

)

+

∫ s

t

1

BT

exp

{
−
∫ u

t

λ̂(v)dv

}
λ̂(u)

(
µZ(u) − µZ(u)

)
du

= 11{τ≤t}
1

BT

(
Zτ − µZ(τ)

)
+ 0

= Lt,

for s ≥ t, L is a (G)-martingale.

L is stronly P -orthogonal to M since

E[LsMs|Gt]

= E

[(
11{τ≤t} + 11{t<τ≤s}

) 1

BT

(
Zτ − µZ(τ)

)
Ms

∣∣Gt

]

= Lt · E[Ms|Ft]

+

∫ s

t

1

BT

(
µZ(u) − µZ(u)

)
exp

{
−
∫ u

t

λ̂(v)dv

}
λ̂(u) E[Ms|Gt] du

= LtMt

for any s ≥ t.

Proof of Lemma 2. From equation (23) in Bielecki et al. (2008), it follows that the
discounted cumulative value of the credit derivative (Z, C, F ) follows the dynamics

dV F
t = (1 − Ht) · exp

{∫ t

0

λ̂(s)ds

}
dmt +

(
Z(t)

BT

− (gC
t + gF

t + gZ
t )

)
dH̃t,
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hence

V F
T

= F0 +

∫ T

0

(1 − Ht) · exp

{∫ t

0

λ̂(s) ds

}
dmt

+

∫ T

0

(
Z(t)

Ê[BT |Ft]
− (gC

t + gF
t + gZ

t )

)
dH̃t

= F0 +

∫ T

0

(1 − Ht) · exp

{∫ t

0

λ̂(s) ds

}
· ξt dŴt +

∫ T

0

Z(t) − µZ(t)

Ê[BT |Ft]
dH̃t

+

∫ T

0

(
µZ(t)

Ê[BT |Ft]
− (gC

t + gF
t + gZ

t )

)
dH̃t

= F0 +

∫ T

0

[
(1 − Ht) · exp

{∫ t

0

λ̂(s) ds

}
· ξt

σ(t)Xt−

+
gC

t− + gF
t− + gZ

t−

Xt−
− µZ(t)

Ê[BT |Ft]Xt−

]
dXt +

∫ T

0

Z(t) − µZ(t)

Ê[BT |Ft]
dH̃t,

is the FS-decomposition of the credit derivative in case of a non-trivial reference
filtration (Ft). In particular, the locally risk-minimizing hedge ratio is given by

hX
t = (1 − Ht) · exp

{∫ t

0

λ̂(s) ds

}
· ξt

σ(t)Xt−
+

gC
t− + gF

t− + gZ
t−

Xt−
− µZ(t)

Ê[BT |Ft]Xt−

.

Proof of Lemma 3.

V F
T = F0 +

∫ T

0

(1 − Ht)G
−1
t dmt +

∫ T

0

(
Z(t)

Ê[BT |Ft]
− (gC

t + gF
t + gZ

t )

)
dH̃t

= F0 +

∫ T

0

(1 − Ht)
1

BtGt

Bt

ξm,r
t + ξm,λ̂

t

ξX,r
t + ξX,λ̂

t

dmX
t +

∫ T

0

Z(t) − µZ(t)

Ê[BT |Ft]
dH̃t

+

∫ T

0

(
µZ(t)

Ê[BT |Ft]
− (gC

t + gF
t + gZ

t )

)
dH̃t

= F0 +

∫ T

0

[
(1 − Ht) Bt

ξm
t

ξX
t

+
gC

t− + gF
t− + gZ

t−

Xt−
− µZ(t)

Ê[BT |Ft]Xt−

]
dXt

+

∫ T

0

Z(t) − µZ(t)

Ê[BT |Ft]
dH̃t.
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The crucial step in deriving explicit hedge ratios in continuous-time models usually
is to calculate the predictable process appearing in the martingale representation
of some payoff. In our setting, we are interested in the process m with martin-
gale representation 11. Bruti-Liberati and Platen (2010, p. 591ff.) considered the
problem of finding explicit integral representations of general derivatives’ payoff
structures. For the reader’s convenience, we state these results, which are basically
due to Heath (1995), in the two propositions below.

We first consider a market driven by a single state variable, a stochastic process Y

with dynamics16

dYt = α(t,Yt) dt + σ(t,Yt) dWt.

Consider a European contingent claim Z whose payoff at maturity T depends on
the evolution of the state variable, i.e.

Z = Z(Y T ),

where Y t = {Ys : s ≤ t} for all t. In particular, we have Ft = σ(Ws : s ≤ t) = σ(Y t)

and, for an (Ft)-martingale m, the martingale representation writes

mt = m0 +

∫ t

0

ξm
s dWs. (A5)

We then have the following result which follows from Bruti-Liberati and Platen
(2010, p. 597).

Proposition A.1 (Explicit Hedge Ratio)

Define the martingale m by mt = E[Z|Ft] for all t. Suppose there exists a deter-

ministic function u : [0,T ] × R → R of class17 C1,3 such that

u(t,y) = E[Z|Ft]

for any t and y. Then, the process ξm in (A5) is given by

ξm
s = σ(s,Ys) ·

∂

∂y
u(s,Ys).

16In our applications, this corresponds to the case of either the interest rate or the default rate

being stochastic. In this case, we have Yt = rt respectively Yt = λ̂t for all t.
17A function u : [0,T ]× R → R,(t,y) 7→ u(t,y) is of class C1,3, if u is continuously differentiable

with respect to t and three times continuously differentiable with respect to y.
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We now consider a market driven by two state variables, i.e. a two-dimensional
stochastic process Y = (Y 1,Y 2) with dynamics18

dY i
t = αi(t,Yt) dt +

2∑

j=1

σi,j(t,Yt) dW i
t . (A6)

for i = 1,2. Consider a European contingent claim Z whose payoff at maturity T

depends on the evolution of the two state variables, i.e.

Z = Z(Y
1

T ,Y
2

T ),

where Y
i

t = {Y i
s : s ≤ t} for all t, i = 1,2. In this case, the martingale representation

writes

mt = m0 +

∫ t

0

ξm,1
s dW 1

s +

∫ t

0

ξm,2
s dW 2

s . (A7)

We now state the explicit formula for the processes ξm,i
s , i = 1,2, in case the state

variable Y i only depends on W i, i = 1,2. In particular, we then have

σi,j = δi,j · σi,i (A8)

in (A6), where δ denotes the Kronecker delta. The following result is a direct
consequence from Bruti-Liberati and Platen (2010, p. 605).

Proposition A.2 (Explicit Hedge Ratio, Case of a Two-Dimensional BM)

Define the martingale m by mt = E[Z|Ft] for all t. Suppose there exists a deter-

ministic function u : [0,T ] × R2 → R of class C1,3 such that

u(t,y1,y2) = E[Z|Ft]

for any t and y. Then, the processes ξm,i, i = 1,2, in (A7) are given by

ξm,1
s = σ1,1(s,Ys) ·

∂

∂y1
u(s,Ys),

ξm,2
s = σ2,2(s,Ys) ·

∂

∂y2
u(s,Ys).

18In our applications, this corresponds to the case of both the interest rate and the default rate

being stochastic. In this case, we have Y 1
t = rt and Y 2

t = λ̂t for all t.
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